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ABSTRACT

The three-dimensional Euler equations are solved on unstructured tetrahedral meshes using a

multigrid strategy. The driving algorithm consists of an explicit vertex-based finite-element

scheme, which employs an edge-based data-structure to assemble the residuals. The multigrid

approach employs a sequence of independently generated coarse and fine meshes to accelerate

the convergence to steady-state of the fine grid solution. Variables, residuals and corrections

are passed back and forth between the various grids of the sequence using linear interpolation.

The addresses and weights for interpolation are determined in a preprocessing stage using an

efficient graph traversal algorithm. The preprocessing operation is shown to require a negligi-

ble fraction of the CPU time required by the overall solution procedure, while gains in overall

solution efficiencies greater than an order of magnitude are demonstrated on meshes containing

up to 350,000 vertices. Solutions using globally regenerated fine meshes as weU as adaptively

refined meshes are given.

This research was supported under the National Aeronautics and Space Adminislxation under NASA Con-

tract No. NAS 1-18605 while the author was in residence at the Institute for Computer Applications in Sci-

ence and Engineering ('[CASE), NASA Langley Research Center, Hampton, VA 23665.
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1. INTRODUCTION

While much literature has been published in recent years advocating the use of unstruc-

tured meshes, three-dimensional unstructured mesh schemes remain painfully inefficient when

compared to available three-dimensional structured techniques. This fact was most recently

brought to light at the Unstructured Mesh WorkShop sponsored by NASA Langley in January

1990, where unstructured mesh Euler solutions on meshes in the vicinity of 100,000 nodes

were seen to tax the limitations of present-day supercomputers [1]. There are two main reasons

for these inefficiencies. The first is due to the indirect addressing performed when computing

on random data-sets, and the resulting scatter-gather operations required on vector computers

which effectively lower the number of achievable Mflops. The second is a result of the simple

explicit schemes generally employed for integrating the Euler equations to steady-state. In

addition, many three-dimensional unstructured schemes require excessive memory overheads

which severely limit the size of the meshes which may be processed on present-day supercom-

puters. In order to construct an efficient three-dimensional unstructured solver, care must be

taken in order to

a) minimize memory overhead

b) minimize amount of gather-scatter

c) provide rapid convergence to steady-state

The first two items can be influenced by the choice of data-structures. In this work, we choose

a vertex-based scheme, with an edge-based data-structure, which minimizes the amount of

indirection required in the residual evaluation loops. The third item represents an algorithmic

issue. While much work has been performed in two dimensions on direct [2], iterative implicit

[3,4,5], and multigrid methods [6,7,8] for convergence acceleration, very little of this work has

been extended to the three-dimensional setting, using realistically fine grids. Direct methods,

and many of the iterative implicit methods incur too large memory overheads to be practical

for three-dimensional problems. Multigrid methods, on the other hand, appear to be well suited

for three-dimensional unstructured problems, since they incur minimal overheads. Further-

more, multigrid methods have been shown to be among the most efficient known solvers for

structured two and three-dimensional problems [9], and this experience has been reproduced in

the unstructured context for two-dimensional problems [6]. In this work, the unstructured mul-

tigrid algorithm originally developed in two dimensions by the author [6] is extended to three
dimensions.

2. THE DESIGN OF A THREE DIMENSIONAL UNSTRUCTURED SOLVER

Three-dimensional computational fluid dynamics problems often involve very complex

geometries and require very high resolution, resulting in a large number of grid points. In order

to be able to handle such complicated problems, and to avoid incurring excessive memory and

CPU overheads, which may have the effect of rendering the problem intractable, efficient and

unambiguous data-structures must be devised for effectively representing the geometry and

constructing the flow-solver.

2.1. Geometry Data-Structures

One of the most widely used models for representing complex geometries in the

computer-aided-design (CAD) and computational-graphics fields is based on the hierarchical

structure of a directed-acyclic graph (DAG) [10], in which higher level objects can be built

using instances of simpler objects. For example, if we wish to compute the flow over a
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squadronof airplanes,thetopof thetree(labeledsquadron)wouldpointto a numberof lower
levelobjectscalled"airplanes".Eachairplanein turnpointsto its majorcomponents, such as

fuselage, W_, nacelle, etc ... These, in turn, point to sub-components, i.e. slat, main wing,

flap, etc .... and so on down the tree, until the smallest components are reached. These most

basic components then point to a number of defining surface patches. We require the basic

building blocks of the entire geometry to be Surfac e patches, since w_ _ interested in discre-

tizing (gridding) the surface of the geometry, as well as the volume around the geometry. Sur-

face patches are the two-dimensional equivalent of the one-dimensional spline curves generally

employed to describe two-dimensional geometries. A large variety of rectangular and triangular

patch types has been devised over the years [11]. Tl3us, the data-structures must accommodate

any patch type, provided it has been previously defined. Finally, once the geometry has been

discretized, each surface patch will point to a number of triangular faces which constitute the

surface grid on that patch. A complete discretized geometry DAG is illustrated in Figure 1. In

actual fact, the geometry DAG is stored in reverse order from that described above. Hence,

each boundary face has a tag associated with it, which points to the parent surface patch, and

each surface patch is associated with a component, etc ... In this manner, when operating on

individual boundary faces (e.g. when adding a point inside a boundary face, or extracting a

subset of the boundary faces for post-processing), we can immediately determine which surface
patch, component, body, etc ... this boundary face belongs to, simply by traversing the tree.

This data-structure has some subtle implications concerning the discretizafion and solution pro-

cess. For example, grid boundary faces which cross over surface-patch boundaries are not per-

mitted. This appears to be a reasonable restriction, since patch boundaries usually correspond

to regions of discontinuities in surface slope, (i.e. a wing break section) or intersecting com-

ponents (i.e. a wing-fuselage intersection) .....

A data-structure for assigning boundary conditions to the flow solver is also required. A

boundary-face based structure is chosen, since a boundary face represents the sm_est element

of the discretized surface geometry. Hence, a tag is associated with each boundary face which

identifies its boundary condition. This structure is completely independent from the geometry

definition data-structure, as_we allow for _e poss_i_fit_ Of multiple boundary conditions on a

single surface patch, or boundary conditions extending across surface-patch boundaries. When

node-based boundary conditions are required, these may be determined by scattering the face-

based condition tags to the nodes, and setting up a set of priority rules for ambiguous nodes

bordering on regions with differing boundary conditions.

2.2. Flow-Solver Data-Structure

In order to design appropriate data-structures for a three-dimensional flow solver, it is

first useful to look at some of the properties of general three-dimensional unstructured meshes.

Such meshes may contain a mix of arbitrary polyhedral elements. We will restrict ourselves to

the subset of these meshes involving only tetrahedra, hexahedra, and "in-between" elements

such as prisms and pyramids, and argue in favor of meshes containing only tetrahedral ele-

merits. For a mesh of hexahedral eIements, neglecting boundary effects, if N represents the

number of vertices, then we have N elements, 3N quadrilateral faces, and 3N edges. For a

mesh of tetrahedral elements with N vertices, we have oN elements, where it is possible for ct

to be linearly related to N, thus yielding a quadratic growth in the number of tetrahedra with

the number of vertices [12] ! In practice, however, most suitable meshes contain 5 < a < 6,

and this could in fact be made a grid generation constraint. Tetrahedral meshes with N vertices
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thus yield aN cells, 2aN triangular faces, and approximately (a + 1)N edges. For meshes con-

taining prismatic and pyramidal elements, the vertex-element-face-edge ratios lie in between

these two extremes. The above ratios point in favor of hexahedral elements. However,

tetrahedral meshes offer the most flexibility in dealing with complex geometries, thus their

widespread usage. A further property of tetrahedral meshes is that they are fully connected,

i.e. each vertex within an element is connected to each other vertex of the element by an edge.

Although the relative benefits of employing mixed elements is still an open question, there

remains a strong incentive for remaining exclusively with tetrahedral elements for geometric

flexibility, simplicity, and due to the fully connected property, as will be shown.

Whereas there appears to be little difference between a cell-centered and a vertex-based
scheme in the case of hexahedral meshes, for tetrahedral meshes, vertex based schemes would

appear to be the logical choice, since cell-centered schemes result in 5 < ct < 6 times more

unknowns, thus incurring substantial memory overheads. A basic data-structure is also

required in order to gather and scatter information back and forth between neighboring vertices

throughout the solution process. An element-based data-structure would require 4aN pointers

(i.e. 4 vertices per elemen0, a (triangular) face-based data-structure 6aN pointers, and an

edge-based data-structure 2(a+l)N pointers. Thus, the edge-based data-structure is the most

compact off all. In fact, this structure, defined by a list of edges with the addresses of the two

vertices delimiting each edge, represents the minimum amount of information required to

describe the unstructured mesh, from which all other quantities (faces, elements) can be recon-

structed. As will be shown, the fact that this edge-structure can be directly employed as the

basis for the flow solver is a result of the fully-connected property of tetrahedral meshes.

If we wish to solve the equation

L u = 0 (1)

where L is a linear operator, by discretizing this continuous equation in a vertex-based manner

on a tetrahedral mesh, we obtain

[nt] v = 0 (2)

where v is now a discrete N-dimensional vector, N being the number of grid points, and IMp]

is an N x N sparse matrix. The graph of a sparse matrix is defined by the graph obtained by

drawing a line joining the two vertices corresponding to the row number and column number

for each non-zero entry in the matrix [13]. If we employ a finite-element discretization pro-

cedure, in which values are gathered from all vertices of each element, an update computed,

and then scattered back to the element vertices, the sparse matrix [M_] must contain a non-zero

entry for any pair of vertices within an element. It is therefore evident that, in the case of

tetrahedral meshes, the fully connected property implies that the graph of the resulting sparse

matrix is identical to the graph of the unstructured mesh. Hence, the sparse matrix [Mr] may be

represented in an edge-based format in which each edge of the mesh is associated with two

non-zero entries (one entry for symmetric matrices) in the matrix IMp] . This property is in

fact true for any operator on any mesh which has a nearest-neighbor stencil, but does not hold

for a finite-element operator on hexahedral meshes, for example, since the matrix will contain

entries relating vertices at diagonally opposed comers of the cell, which are not joined by a

mesh edge.

In practice, the edge-based data-structure may also be applied to non-linear problems such

as the Euler equations. A residual evaluation for the Euler equations may be recast as a
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sparse-matrixvectormultiplicationwherethe matrixcoefficientsareformedwith edge-based
metricquantitiesandtheprimitivevariablesat theverticesat eitherendof theedge.In fact,
evenfor linearproblems,it is usuallynot desirableto storeall Coefficientsof thematrix.We
chooseto storeonly theminimumamountof informationat eachedgefrom whichall matrix
coefficientscanbe reconstructed.This is especiallyimportantfor systemsof equations,andin
operatorsinvolvingasequenceof similarmatrices.FortheNavier-Stokesequations,thediscre-
tizedviscoustermsmayalsobeconstructedusingthe edge-baseddata-structure,sincethese
also resultin nearestneighborstencils,in the caseof constantviscosity,as pointedout by
Barth [14]. In orderto includethe effectof variableviscosityin a purelyedge-baseddata-
structure,thegradientof viscosit_may_ precomputedai eachvertex,andthenanextrapola-
tion procedureusingprecomputerl_edge-basedcoefficientsmay be employed.Finally, the
biharmonicdissipativeoperatoremploYedto constructartificialdissipativetermsin thepresent
scheme,whichresultsin a stencilwhichextendsout to theneighborsof neighbors,maybe
formedby a doubleapplicationof a sparsematrix:

[Mt] [Mt] v = [Mr]2 v (3)

Residual evaluations are thus constructed as a sequence of sparse-matrix vector multiplications,

which are executed as loops over the edge'based data-structures. In order to vectorize such

loops, the edges must be divided into groups (colors) within which no vertex is accessed more

than once. The original scalar loop is then replaced by an outer loop over the various colors or

groups, with an inner vector loop over the edges of a given color.

2.3. Single-Grid Solver

The base solver employed to drive the multigrid algorithm represents the three-

dimensional extension of the two-dimensional solver employed by Mavriplis [6], and is similar

to the method employed by Jameson [15]. The flow variables are stored at the mesh vertices,

and the residuals are assembled using loops over the edges of the mesh. The discretization

scheme is based on a Galerkin finite-element approach, using piecewise linear flux functions

over the individual tetrahedra. This type of discretizafion corresponds to central differencing in

structured-mesh terminology, and thus additional artificial dissipation terms must be introduced

to maintain the stability of the scheme. These are constructed as a blend of a Laplacian and a

biharmonic operator on the conserved variables, the Laplacian dissipation being applied only in

the vicinity of a shock, and the higher accuracy biharmonic dissipation being employed else-

where in the flow-field.

The spatially discretized equations represent a large system of coupled ordinary

differential equations, which are then integrated in time to obtain the steady-state solution. A

five-stage Runge-Kutta scheme is employed for the time integration, where the convective

terms are evaluated at each stage in the time-stepping scheme, and the dissipative terms are

only evaluated at the first two stages and then frozen for the remaining stages. A complete

multistage time-step, in which the solution is advanced from time level n to level n+l, can be

written as

w (0)

w(l)

w (2)

=w n

=W (°) - _IAI[Q(w(°))-D(w(°))]

=w (0) - tl,2AI[Q(w(I)) - O (w(1))l

|
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with

w (3)= w <o)_ ct3At[Q(w(2))- D (wO))]

w C4)= w C°)- o_,_tIQ(wo))- D (w°))]

w Cs)= w (o)_ ctsAtIQ(w(4')- O(w(1))]

w ("+1)= w (5)

(4)

t_1 = 1/4 Ct2 = 1/6 t_ = 3/8 Ct4= 1/2 0_S= 1

where w represents the conserved flow variables, Q is the convective residual, D denotes the

dissipative operator, and At represents the discrete time-step. This type of scheme requires the

separate evaluation of the dissipative terms and the convective terms. The former require a

sequence of two loops over edges, while the convective terms can be assembled in a single

edge-loop. This particular scheme has been designed to rapidly damp out high frequency error

components [9], which is a necessary characteristic for a multigrid driving scheme. Conver-

gence to steady-state is accelerated by employing local time-stepping and implicit residual

averaging [6,9], which have previously been described in the context of unstructured meshes.

3. MULTIGRID STRATEGY

The idea of a multigrid strategy is to perform time steps on coarser meshes to calculate

corrections to a solution on a fine mesh. The advantages of time stepping on coarse meshes are

twofold: first, the permissible time-step is much larger, since it is proportional to the cell size,

and secondly, the work is much less because of the smaller number of grid points. On the

finest grid of the sequence, the flow variables are updated by the 5-stage scheme as shown in

equations (4). The residuals and flow variables are then transferred to the next coarser grid. If

R' represents the transferred residuals and w' the transferred flow variables, a forcing function

on the coarse grid can be defined as

P = R' - R(w') (5)

Now on the coarse grid, time stepping proceeds as shown below:

w (q) = w Cq-') - cqAt (R(w Cq-1)) + P) (6)

for the q-th stage. In the first stage, w cq-*) reduces to the transferred flow variable w'. Thus,

the calculated residuals on the coarse grid are canceled by the second term in the forcing func-

tion P, leaving only the R' term. This indicates that the driving force for the solution on the

coarse grid is provided by the fine grid residuals. Thus we are ensured that, when the fine grid

solution is fully converged, no further corrections will be generated by the coarser grids. This

procedure is repeated on successively coarser grids. When the coarsest grid is reached, the

corrections are transferred back to the finer grids. The use of a multigrid method with unstruc-

tured meshes presents an additional challenge. Consistent coarse tetrahedral grids can no

longer be formed by simply considering subsets of the fine grid vertices. An alternative would

be to generate the fine mesh by repeatedly subdividing an initial coarse mesh in some manner.

However, generally poor topological control of the fine mesh results from such a procedure.

Another approach, known as the agglomeration technique, reconstructs coarse grids from a

given fine unstructured grid by grouping neighboring elements together to form large

polyhedral coarse-grid cells [7,8]. In the present work, it has been decided to pursue an
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unstructuredmultigridapproachin whicha sequence of completely unrelated coarse and fine

meshes are employed. This approach, which has already been demonstrated in two dimensions

[6], provides great flexibility in determining the configuration of the coarsest and finest meshes.

Coarse meshes may be designed to optimize the speed of convergence, whereas fine meshes

may be constructed based on solution accuracy considerations. Furthermore, since no relation

is assumed between the various meshes of the sequence, new finer meshes may also be gen-

erated by adaptive refinement.

The key to the success of such a strategy lies in the ability to efficiently transfer vari-

ables, residuals and corrections back and forth between unrelated unstructured meshes. In the

present context, this is performed using linear interpolation. For each vertex of a given grid,
the tetrahedron which contains this vertex on the grid to which variables are to be interpolated

is determined. The variable at this node is then linearly distributed to the four vertices of the

enclosing tetrahedron. The main difficulty lies in efficiently determining the enclosing cell for

each grid point. A naive search over all cells would lead to an O(N 2) complexity algorithm,

where N is the total number of grid points, and would be more expensive than the flow solu-

tion itself. In this work, a graph traversal search routine with best case complexity of O(N) is

employed. This type of algorithm requires two additional data-structures. First, a list of the

tetrahedra in each mesh must be constructed. For each tetrahedron, the address of the four

forming vertices are stored, as well as the address of the four neighboring tetrahedra. The

search begins by choosing a node on one grid, and locating the enclosing tetrahedron on the

other grid. This can usually be determined a priori, for example, by choosing the minimum x-

y-z node and the minimum x-y-z tetrahed-ron for-the respective grids. We next chose a new

node for which the enclosing cell is to be searched, and this node is taken as a neighbor of the

previous node. As a starting guess we choose the tetrahedron which was previously found to
enclose the first node, which is in the same vicinity as the new node. If this cell is not found to

enclose the new node, we search the four neighbors of this cell, and then the neighbors of

these neighbors, thus traversing through the mesh until the enclosing cell is located, at which

point the process is repeated for a new node.

Additional complications arise at geometry boundaries. Since the geometry is described

by a series of curved surfaces, the boundary points of a given fine grid will not necessarily be

included on the surface defined by a coarser grid. In fact, for concave boundaries, such points

may even lie outside of the coarse grid computational domain, as illustrated in Figure 2, for the
two-dimensional case. However, all such points are contained on the surface-patch definition of

the geometry. Hence, rather than searching for the boundary faces from a particular grid which

enclose a given boundary node from another grid in physical coordinates, this searching and

subsequent interpolation are done in the two-dimensional s-t parametric space of the surface

patch, as illustrated in Figure 3. Thus, for each surface patch, we loop over the "grid 1" nodes

on the patch, and locate the "grid 2" boundary faces on that patch which enclose the nodes.

This type of search cannot fail, since we have precluded the possibility of having boundary

faces extending across surface-patch boundaries.

The interpolation pattems between the various meshes are completely determined by

assigning to each mesh vertex four interpolation addresses and four interpolation weights,

which are all computed in a preprocessing phase. In practice, this preprocessing has been found

to require an amount of CPU time roughly equivalent to one or two flow solution cycles on the

finest grid. The extra addresses and weights needed to determine the interpolation patterns

represent an additional storage requirement of 8 words/node, or about 10%. Since the coarse

m
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meshes in three dimensions generally contain one half as many points in each coordinate direc-

tion as the next finer mesh, the total number of mesh points decreases by a factor of 8, when

going to a coarser mesh. Thus the total additional memory requirement over a single grid

solver is less than 25%. In the flow solution phase, the restriction and prolongation operations

consume less than 6% of the total time required, since they merely represent a scatter of data

to pre-assigned locations. Combined with the extra work on coarser meshes, and an extra

required fine-grid residual evaluation (prior to the restriction operation), the total cost of a mul-

tigrid cycle is about 45% higher in terms of CPU time than the equivalent single fine-grid

cycle.

4. RESULTS

4.1. Globally Generated Meshes

A standard three-dimensional test case has been employed to validate the present code,

and to evaluate the efficiency of the multigrid strategy. The geometry consists of an ONERA

M6 wing delimited by a symmetry plane. The surface-patch geometry definition is illustrated in

Figure 4. A total of 36 surface patches were employed to describe the wing, symmetry plane,

and outer boundaries of the flow-field. On the wing surface, these consist of mostly rectangular

bicubic Coon's patches with several triangular patches near the wing tip. A sequence of four

meshes was generated about this configuration using the advancing-front technique [16]. The

resulting surface meshes are displayed in Figure 5. The finest grid contains 357,900 vertices

and 2,000,034 tetrahedra, while the coarsest grid of the sequence contains only 2800 vertices

and 13,576 tetrahedra. The flow over the ONERA M6 wing has been computed with the mul-

tigrid strategy using this sequence of four meshes. The Mach number and incidence for this

case are 0.84 and 3.06 degrees, respectively. At these conditions, the flow is transonic and a

double shock is formed over most of the span of the wing. The computed Mach contours on

the finest grid of the sequence are shown in Figure 6, illustrating the double shock pattern,

which appears to be well resolved on this relatively fine mesh. The multigrid convergence rate

for this case is depicted in Figure 7, where 100 multigrid W-cycles were successively run on

each of the three finest grids of the sequence, after which the solution was interpolated to the

next finer grid and multigrid time-stepping resumed. In practice, as few as 25 cycles may be

performed on the coarser grids, prior to initializing the fine grid multigrid solution process.

However, an equal number of cycles was run on each grid in order to compare the multigrid

convergence rates on the various grids. As can be seen, the multigrid convergence rate

degrades only slightly when going to finer meshes. On the finest mesh, the flow-field residuals

were reduced by 6 orders of magnitude over I00 cycles, for an average spectral radius of

0.871. The single grid convergence rate for this case (including local time-stepping and resi-

dual averaging) is compared to the multigrid convergence rate by plotting both convergence

histories in terms of work units in Figure 8, where a work unit is defined as the time required

for a single-grid explicit cycle. Even after 400 cycles, the single grid calculation is seen to

have reduced the residuals by only 3 orders of magnitude, a feat which required over 2 hours

of CPU time on a single processor of the CRAY-YMP. This single grid run required 33 MW

of memory and ran at a speed of 19 seconds/cycle (5 stage Runge-Kutta with 2 dissipation

evaluations, implicit residual smoothing), which translates to a memory requirement of 92

words per vertex and 53 _tsecs/vertex/cycle. In contrast, the multigrid run required 43 MW of

memory, and 34 seconds per multigrid cycle, which translates to 120 words per fine grid
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vertex, and 95 lasecsbeertex/multigrid cycle. This increase in resource requirements over the

single grid case is somewhat larger than that stated in the previous section, and is due to the

coarse grids of the sequence containing more than 1/8 the number of nodes of the previous

finer grid. It should also be noted that these figures vary somewhat with the ratio of boundary

vertices to interior nodes on a given grid. The preprocessing time for setting up the interpola-

tion patterns between the various grids required 40 seconds of CPU time, and the actual

transfer of data back and forth between the various meshes of the sequence within each mul-

tigrid cycle consumed less than 6% of the total time for this run. An engineering accuracy cal-

culation could be achieved with this case by performing 25 cycles on each of the coarser grids,

and 50 cycles on the finest grid, resulting in a residual reduction of 3.5 orders of magnitude,

and requiting 30 CPU minutes on a single CRAY-YMP processor.

Figure 9 depicts the computed Mach contours obtained after 50 multigrid cycles on the

second finest grid, which contains a total of 53,961 points and 287,962tetrahedra. The double

shock pattern seems to be reasonably well captured on this coarser grid. The values of the lift

and drag coefficients for this case are compared with the values obtained on the finer mesh, in

Table 1. The coarse grid lift coefficient is seen to be within 2% of the more accurate fine grid

value. It appears that, due to the possibility of clustering more grid points near the body sur-

face with the unstructured mesh, reasonably accurate solutions can be obtained with a relatively

lower number of mesh points, as compared to a structured-grid calculation. The solution on

this grid required only 7 MW of memory and 5 CPU minutes, during which the residuals were

reduced by 5 orders of magnitude. This type of calculation can easily be performed in the

interactive mode on the NAS CRAY-YMP.

4.2. Adaptively Generated Meshes

One of the main advantages of unstructured grids is the possibility of easily performing

adaptive meshing. The present multigrid approach has been devised in order to accommodate

adaptive meshing strategies. Since the unstructured multigrid assumes no relation between the

various coarse and fine meshes of the sequence, finer meshes may be generated either, as in the

previous case, by global remeshing, or by adaptive refinement of the current finest mesh. A

full multigrid strategy is employed in conjunction with adaptive meshing, as illustrated in Fig-

ure 10. Multigfid time-stepping is first performed on a sequence of globally generated meshes.

When (partial) convergence is obtained on the finest mesh, a new finer mesh is created by

adding new points to the existing fine mesh in regions of high gradients and locally restructur-

ing the mesh. After all new mesh points have been inserted, the patterns for interpolating data

between the new mesh and the previous mesh are computed and stored. The solution is then

interpoIated onto the new fine mesh, and multigrid time-stepping is resumed on this augmented

sequence of meshes, which contains the new adapted mesh as the finest mesh. This procedure

may be repeated, each time adding a new mesh to the sequence, until the desired solution accu-

racy has been obtained. The undivided gradient of density is employed as a refinement cri-

teflon. For each tetrahedron, the density difference along all six edges of the cell is examined.

If any of these differences is larger than some fraction of the average density difference over

all mesh edges, new mesh points are added at the midpoints of an six edges, thus ensuring an

isotropic refinement. Each new point is inserted into the mesh using Bowyer's Delaunay tri-

angulation algorithm. This algorithm consists of locating the union of tetrahedra whose circum-

spheres contain the new point. The mesh is then locally restructured by removing the union of

all such tetrahedra, and creating new tetrahedra by joining the new point to the vertices of the

|
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faces delimiting the region of removed tetrahedra. If the original mesh is a Delaunay triangula-

tion, this procedure is guaranteed to result in a consistent (Delaunay) mesh [17]. However, the

original meshes to be refined have been generated using the advancing-front technique [16],

and hence are not necessarily Delaunay triangulations. Therefore, each time a new point is

inserted, the resulting local restructured mesh is checked for consistency; if negative cell

volumes are created, then the mesh point is rejected. Points which are rejected may often be

successfuUy reintroduced after all other points have been inserted, since the mesh becomes

more "Delaunay" as more points are inserted. In practice, the advancing-front meshes do not

represent large deviations from the corresponding "Delaunay" meshes, and generally less than

2% of the attempted points are rejected. When new boundary points are introduced, they are

repositioned onto the analytic surface-patch definition of the geometry by recomputing the phy-

sical coordinates of the new point based on the assigned parametric patch coordinates, s and t,

which are taken as the average of the parametric coordinates of the two vertices at either end

of the generating boundary edge. Special care is also taken to preclude the possibility of

newly formed boundary faces from crossing over adjacent surface-patch boundaries.

The ONERA M6 wing case has been recomputed using the adaptive meshing strategy.

The final adapted mesh is shown in Figure 11. This represents the fourth mesh in the mul-

tigrid sequence, where the two finest meshes have been generated adaptively, and the two

coarse meshes correspond to the coarsest meshes of the sequence depicted in Figure 5. The
final mesh contains a total of 173,412 vertices, and 1,013,718 tetrahedra. Extensive refinement

is seen to occur in the leading-edge region, and in the vicinity of the shocks. While this mesh

contains roughly 1/2 the number of vertices of the finest mesh of the previous case, it contains

slightly higher maximum resolution in the leading-edge and shock regions. The computed

Mach contours for this case are depicted in Figure 12, where good resolution of the shocks and

leading-edge expansion are observed. The computed lift and drag coefficients are compared

with those obtained on the non-adapted meshes in the previous section. Good agreement

between the adapted mesh and the global fine mesh drag values is observed. The adapted mesh

lift coefficient however is somewhat lower than the value obtained on the global fine mesh.

This is probably a result of the particular refinement criterion chosen, and will be the subject of

future investigations. The multigrid convergence rate for this case is shown in Figure 13. The

fine grid residuals were reduced by roughly 5 orders of magnitude over 100 multigrid cycles,

for an average reduction of 0.898 per multigrid cycle, with each cycle requiting roughly 20
seconds of CPU time.

Figure 14 depicts the computed surface pressure coefficients at the 44% span location on

the wing for the three finest global meshes and the finest adaptively generated mesh. In Table

1, the computed lift and drag coefficients for these same meshes are displayed to give an indi-

cation of the rate of grid convergence of the present scheme, and the accuracy of the adapted

mesh results. It should however be noted that these values may differ slightly from those

reported elsewhere, due to the proximity of the outer boundary, where at present a uniform

flow boundary condition is applied. The effect of the outer boundary on solution accuracy will
be revisited in future work.

5. CONCLUSION

Multigrid has proven to be an effective means for accelerating the convergence to

steady-state of three-dimensional unstructured Euler solvers. Increases in efficiency of over an

order of magnitude have been demonstrated in this work. The present approach also offers the
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possibilityof enhancing solution accuracy very effectively through the use of adaptive meshing

techniques. At present, the adaptive meshing procedure and the flow solving procedure are

performed separately. In the future, the integratio n of these two tasks into a single code is

planned. The results obtained in this work suggest=that it should be possibie to solve most

flows around complex geometries w_ith of the order of 100 words/vertex and 75 to 100
I.tseconds/mg-cycle/node in about 100 multigrid cycles. The_-fore, it seems that accurate solu-

tions of steady inviscid flows over complete aircraft configurations using unstructured meshes

within a reasonable turnaround time are well within the reach of present-day supercomputers,

especially given the potential beneficial effects of multitasking on such machines.
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Figure 1
Illustration of Directed-Acyclic-Graph (DAG) Data-Structure

Employed to Represent the Geometry
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Figure 2

Illustration of the Relative Displacement of Coarse and Fine Grid Boundary
Points Due to the Surface Definition of the Geometry
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Figure 3

Definition of Physical Coordinate System and Individual
Surface-Patch Parametric Coordinate Systems
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Figure 4
Geometric Surface Patch Definition Employed for the ONERA M6 Wing

(Total Number of Surface Patches -- 36)
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Figure 5
Sequence of Global Coarse and Fine Meshes Employed for Computing Inviscid Transonic Flow over the ONERA M6 Wing

(Mesh 1 : 2,800 Nodes 13,576 Tetrahedra 2,004 Boundary Faces)
(Mesh 2 : 9,428 Nodes 47,504 Tetrahedra 5,864 Boundary Faces)

(Mesh 3 : 53,961 Nodes 287,962 Tetrahedra 23,108 Boundary Faces)
(Mesh 4 : 357,900 Nodes 2,000,034 Tetrahedra 91,882 Boundary Faces)
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Figure 6

Computed Mach Contours on the Finest Grid of the Multigrid Sequence
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Figure 7
Convergence Rate of the Unsta'uctured Multigrid Algorithm on the

Three Finest Grids of the Four Grid Sequence about an ONERA M6 Wing as Mesured

by the Average Density Residuals Versus the Number of Multigfid Cycles
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Figure 8
Comparison of the Multigrid Convergence Rate and the Single Grid

Convergence Rate on the Finest Grid of the Sequence about the ONERA M6 Wing
as Measured by '.he Average Density Residuals versus the Number of Work Units
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Figure 9
Computed Mach Contours on the Second Finest Mesh of the Multigrid
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Figure 10
Full Multigrid Sumegy Employed in Conjunction with the Adaptive Meshing Swategy
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Figure 11

Finest Adapted Mesh Generated About ONERA M6 Wing

(Number of Nodes = 173,412 Number of Tetrahedra = 1,013,718)
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Figure 12

Computed Mach Contours on the Adaptively Generated Mesh About the ONERA M6 Wing
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Figure 13

Convergence Rate of the Unstructured Multigrid Algorithm on the

Adaptively Generated Sequence of Meshes about the ONERA M6 Wing as Mesured

by the Average Density Residuals Versus the Number of Multigrid Cycles
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Figure 14
Computed Surface Pressure Coefficients at the 44% Span Location

for the Three Finest Grids of the Globally Generated Mesh Sequence

and for the Finest Adaptively Generated Mesh
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Number of

Nodes

9,428

53,961

357,900

173,412

(Adapted)

Number of

Tetrahedra

47,504

287,962

2,000,034

1,013,718

Number of

Boundary Faces

Lift Coefficient

5,864

23,108

91,882

32,212

0.2713

0.2871

0.2923

0.2901

Drag Coefficient

0.0275

0.0188

0.0131

0.0130

Table 1

Computed Force Coefficients on the Three Finest Meshes of the Globally

Generated Mesh Sequence and on the Finest Adaptively Generated Mesh

(Note: For this Geometry # Boundary Nodes = # Boundary Faces / 2 + 2)
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